
Collaborative Filtering at Scale
Recommender engines with Mahout and Hadoop

Berlin Buzzwords
Sean Owen
8 June 2010

+
Mahout is …

!  Machine learning …
!  Collaborative filtering

(recommenders)
!  Clustering

!  Classification

!  Frequent item set mining

!  and more

!  … at scale
!  Much implemented on Hadoop

!  Efficient data structures

Collaborative Filtering at Scale

+
Collaborative Filtering is …

!  Given a user’s preferences
for items, guess which other
items would be highly
preferred

!  Only needs preferences;
users and items opaque

!  Many algorithms!

Collaborative Filtering at Scale

+
Collaborative Filtering is …

Collaborative Filtering at Scale

Sean likes “Scarface” a lot
Robin likes “Scarface” somewhat
Grant likes “The Notebook” not at all
…

(123,654,5.0)!
(789,654,3.0)!
(345,876,1.0)!
…!

(345,654,4.5)!
…!

Magic

Grant may like “Scarface” quite a bit
…

+
Recommending people food

Collaborative Filtering at Scale

+
Item-Based Algorithm

!  Recommend items similar to a user’s highly-preferred items

Collaborative Filtering at Scale

+
Item-Based Algorithm

!  Have user’s preference for items

!  Know all items and can compute weighted average to
estimate user’s preference

!  What is the item – item similarity notion?

Collaborative Filtering at Scale

for every item i that u has no preference for yet!
 for every item j that u has a preference for!
 compute a similarity s between i and j!
 add u's preference for j, weighted by s, !
 to a running average !
return the top items, ranked by weighted average!

+
Item-Item Similarity

!  Could be based on content…
!  Two foods similar if both sweet, both cold

!  BUT in collaborative filtering, based only on
preferences (numbers)
!  Pearson correlation between ratings ?

!  Log-likelihood ratio ?

!  Simple co-occurrence:
Items similar when appearing often in the same user’s set of
preferences

Collaborative Filtering at Scale

+
Estimating preference

Collaborative Filtering at Scale

5

5

2

Preference Co-occurrence 9

16

5

9 + 16 + 5

5•9 + 5•16 + 2•5 4.5 =
30

135
=

+
As matrix math

!  User’s preferences are a vector
!  Each dimension corresponds to one item

!  Dimension value is the preference value

!  Item-item co-occurrences are a matrix
!  Row i / column j is count of item i / j co-occurrence

!  Estimating preferences:
co-occurrence matrix ! preference (column) vector

Collaborative Filtering at Scale

+
As matrix math

Collaborative Filtering at Scale

16 9 16 5 6

9 30 19 3 2

16 19 23 5 4

5 3 5 10 20

6 2 4 20 9

16 animals ate both
hot dogs and ice
cream

10 animals ate
blueberries

0

5

5

2

0

135

251

220

60

70

+
A different way to multiply

!  Normal: for each row of matrix
!  Multiply (dot) row with column vector

!  Yields scalar: one final element of
recommendation vector

!  Inside-out: for each element of column vector
!  Multiply (scalar) with corresponding matrix

column

!  Yield column vector: parts of final
recommendation vector

!  Sum those to get result

!  Can skip for zero vector elements!

Collaborative Filtering at Scale

+
As matrix math, again

Collaborative Filtering at Scale

135

251

220

60

70

9

30

19

3

2

5

16

19

23

5

4

5

5

3

5

10

20

2

+
What is MapReduce?

!  1 Input is a series of key-value pairs: (K1,V1)

!  2 map() function receives these, outputs 0 or more (K2, V2)

!  3 All values for each K2 are collected together

!  4 reduce() function receives these, outputs 0 or more (K3,V3)

!  Very distributable and parallelizable

!  Most large-scale problems can be chopped into a series of
such MapReduce jobs

Collaborative Filtering at Scale

+
Build user vectors (mapper)

!  Input is text file: user,item,preference!

!  Mapper receives
!  K1 = file position (ignored)

!  V1 = line of text file

!  Mapper outputs, for each line
!  K2 = user ID

!  V2 = (item ID, preference)

Collaborative Filtering at Scale

+
Build user vectors (reducer)

!  Reducer receives
!  K2 = user ID

!  V2,… = (item ID, preference), …

!  Reducer outputs
!  K3 = user ID

!  V3 = Mahout Vector implementation

!  Mahout provides custom Writable
implementations for efficient Vector
storage

Collaborative Filtering at Scale

+
Count co-occurrence (mapper)

!  Mapper receives
!  K1 = user ID

!  V1 = user Vector

!  Mapper outputs, for each pair of items
!  K2 = item ID

!  V2 = other item ID

Collaborative Filtering at Scale

+
Count co-occurrence (reducer)

!  Reducer receives
!  K2 = item ID

!  V2,… = other item ID, …

!  Reducer tallies each other item;
creates a Vector

!  Reducer outputs
!  K3 = item ID

!  V3 = column of co-occurrence matrix
 as Vector

Collaborative Filtering at Scale

+
Partial multiply (mapper #1)

!  Mapper receives
!  K1 = user ID

!  V1 = user Vector

!  Mapper outputs, for each item
!  K2 = item ID

!  V2 = (user ID, preference)

Collaborative Filtering at Scale

+
Partial multiply (mapper #2)

!  Mapper receives
!  K1 = item ID

!  V1 = co-occurrence matrix column Vector

!  Mapper outputs
!  K2 = item ID

!  V2 = co-occurrence matrix column Vector

Collaborative Filtering at Scale

+
Partial multiply (reducer)

!  Reducer receives
!  K2 = item ID

!  V2,… = (user ID, preference), …
 and co-occurrence matrix column Vector

!  Reducer outputs, for each item ID
!  K3 = item ID

!  V3 = column vector and (user ID, preference)
 pairs

Collaborative Filtering at Scale

+
Aggregate (mapper)

!  Mapper receives
!  K1 = item ID

!  V1 = column vector and (user ID, preference)
 pairs

!  Mapper outputs, for each user ID
!  K2 = user ID

!  V2 = column vector times preference

Collaborative Filtering at Scale

+
Aggregate (reducer)

!  Reducer receives
!  K2 = user ID

!  V2,… = partial recommendation vectors

!  Reducer sums to make recommendation
Vector and finds top n values

!  Reducer outputs, for top value
!  K3 = user ID

!  V3 = (item ID, value)

Collaborative Filtering at Scale

+
Reality is a bit more complex

Collaborative Filtering at Scale

+
Ready to try

!  Obtain and build Mahout from Subversion
http://mahout.apache.org/versioncontrol.html

!  Set up, run Hadoop in local pseudo-distributed mode

!  Copy input into local HDFS

!  hadoop jar mahout-0.4-SNAPSHOT.job  
 org.apache.mahout.cf.taste.hadoop.item.RecommenderJob  
 -Dmapred.input.dir=input  
 -Dmapred.output.dir=output !

Collaborative Filtering at Scale

+
Mahout in Action

!  Recommenders
!  Data representation

!  Non-distributed algorithms

!  Distributed algorithms

!  Clustering
!  Available in weeks

!  Classification
!  In progress

!  http://www.manning.com/owen/

Collaborative Filtering at Scale

+
Questions?

!  Gmail: srowen

!  user@mahout.apache.org

!  http://mahout.apache.org

Collaborative Filtering at Scale

