
Collaborative Filtering at Scale 
Recommender engines with Mahout and Hadoop 

Berlin Buzzwords 
Sean Owen 
8 June 2010 



+
Mahout is … 

!  Machine learning … 
!  Collaborative filtering  

(recommenders) 
!  Clustering 

!  Classification 

!  Frequent item set mining 

!  and more 

!  … at scale 
!  Much implemented on Hadoop 

!  Efficient data structures 
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+
Collaborative Filtering is … 

!  Given a user’s preferences 
for items, guess which other 
items would be highly 
preferred 

!  Only needs preferences; 
users and items opaque 

!  Many algorithms! 
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+
Collaborative Filtering is … 
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Sean likes “Scarface” a lot 
Robin likes “Scarface” somewhat 
Grant likes “The Notebook” not at all 
… 

(123,654,5.0)!
(789,654,3.0)!
(345,876,1.0)!
…!

(345,654,4.5)!
…!

Magic 

Grant may like “Scarface” quite a bit 
… 



+
Recommending people food 
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+
Item-Based Algorithm 

!  Recommend items similar to a user’s highly-preferred items 
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+
Item-Based Algorithm 

!  Have user’s preference for items 

!  Know all items and can compute weighted average to 
estimate user’s preference 

!  What is the item – item similarity notion? 
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for every item i that u has no preference for yet!
  for every item j that u has a preference for!
    compute a similarity s between i and j!
    add u's preference for j, weighted by s, !
             to a running average !
return the top items, ranked by weighted average!



+
Item-Item Similarity 

!  Could be based on content… 
!  Two foods similar if both sweet, both cold 

!  BUT in collaborative filtering, based only on  
preferences (numbers) 
!  Pearson correlation between ratings ? 

!  Log-likelihood ratio ? 

!  Simple co-occurrence: 
Items similar when appearing often in the same user’s set of 
preferences 
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+
Estimating preference 
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+
As matrix math 

!  User’s preferences are a vector 
!  Each dimension corresponds to one item 

!  Dimension value is the preference value 

!  Item-item co-occurrences are a matrix 
!  Row i / column j is count of item i / j co-occurrence 

!  Estimating preferences: 
co-occurrence matrix ! preference (column) vector 
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+
As matrix math 
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+
A different way to multiply 

!  Normal: for each row of matrix 
!  Multiply (dot) row with column vector 

!  Yields scalar: one final element of 
recommendation vector 

!  Inside-out: for each element of column vector 
!  Multiply (scalar) with corresponding matrix 

column 

!  Yield column vector: parts of final 
recommendation vector 

!  Sum those to get result 

!  Can skip for zero vector elements! 
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+
As matrix math, again 
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+
What is MapReduce? 

!  1 Input is a series of key-value pairs: (K1,V1) 

!  2 map() function receives these, outputs 0 or more (K2, V2) 

!  3 All values for each K2 are collected together 

!  4 reduce() function receives these, outputs 0 or more (K3,V3) 

!  Very distributable and parallelizable 

!  Most large-scale problems can be chopped into a series of 
such MapReduce jobs 
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+
Build user vectors (mapper) 

!  Input is text file: user,item,preference!

!  Mapper receives 
!  K1 = file position (ignored) 

!  V1 = line of text file 

!  Mapper outputs, for each line 
!  K2 = user ID 

!  V2 = (item ID, preference) 
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+
Build user vectors (reducer) 

!  Reducer receives 
!  K2 = user ID 

!  V2,… = (item ID, preference), … 

!  Reducer outputs 
!  K3 = user ID 

!  V3 = Mahout Vector implementation 

!  Mahout provides custom Writable 
implementations for efficient Vector 
storage 

Collaborative Filtering at Scale 



+
Count co-occurrence (mapper) 

!  Mapper receives 
!  K1 = user ID 

!  V1 = user Vector 

!  Mapper outputs, for each pair of items 
!  K2 = item ID 

!  V2 = other item ID 
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+
Count co-occurrence (reducer) 

!  Reducer receives 
!  K2 = item ID 

!  V2,… = other item ID, … 

!  Reducer tallies each other item; 
creates a Vector 

!  Reducer outputs 
!  K3 = item ID 

!  V3 = column of co-occurrence matrix  
          as Vector 
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+
Partial multiply (mapper #1) 

!  Mapper receives 
!  K1 = user ID 

!  V1 = user Vector 

!  Mapper outputs, for each item 
!  K2 = item ID 

!  V2 = (user ID,  preference) 
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+
Partial multiply (mapper #2) 

!  Mapper receives 
!  K1 = item ID 

!  V1 = co-occurrence matrix column Vector 

!  Mapper outputs 
!  K2 = item ID 

!  V2 = co-occurrence matrix column Vector 
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+
Partial multiply (reducer) 

!  Reducer receives 
!  K2 = item ID 

!  V2,… = (user ID, preference), … 
 and co-occurrence matrix column Vector 

!  Reducer outputs, for each item ID 
!  K3 = item ID 

!  V3 = column vector and (user ID, preference)  
 pairs 
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+
Aggregate (mapper) 

!  Mapper receives 
!  K1 = item ID 

!  V1 = column vector and (user ID, preference)  
 pairs 

!  Mapper outputs, for each user ID 
!  K2 = user ID 

!  V2 = column vector times preference 
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+
Aggregate (reducer) 

!  Reducer receives 
!  K2 = user ID 

!  V2,… = partial recommendation vectors 

!  Reducer sums to make recommendation 
Vector and finds top n values 

!  Reducer outputs, for top value 
!  K3 = user ID 

!  V3 = (item ID, value) 
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+
Reality is a bit more complex 
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+
Ready to try 

!  Obtain and build Mahout from Subversion 
http://mahout.apache.org/versioncontrol.html 

!  Set up, run Hadoop in local pseudo-distributed mode 

!  Copy input into local HDFS 

!  hadoop jar mahout-0.4-SNAPSHOT.job  
  org.apache.mahout.cf.taste.hadoop.item.RecommenderJob  
  -Dmapred.input.dir=input  
  -Dmapred.output.dir=output !
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+
Mahout in Action 

!  Recommenders 
!  Data representation 

!  Non-distributed algorithms 

!  Distributed algorithms 

!  Clustering 
!  Available in weeks 

!  Classification 
!  In progress 

!  http://www.manning.com/owen/  
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+
Questions? 

!  Gmail: srowen 

!  user@mahout.apache.org 

!  http://mahout.apache.org 
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