

Collaborative Filtering at Scale

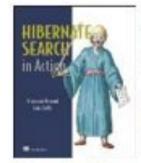
Recommender engines with **Mahout** and **Hadoop** Berlin Buzzwords Sean Owen 8 June 2010

+ Mahout is ...

- Machine learning ...
 - Collaborative filtering (recommenders)
 - Clustering
 - Classification
 - Frequent item set mining
 - and more
- ... at scale
 - Much implemented on Hadoop
 - Efficient data structures

+ Collaborative Filtering is ...

- Given a user's preferences for items, guess which other items would be highly preferred
- Only needs preferences; users and items opaque
- Many algorithms!

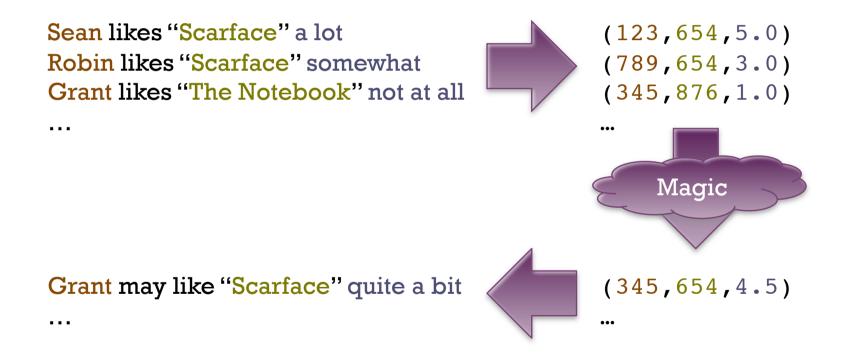


Hibernate Search in Action by Emmanuel Bernard (Dec 28, 2008) Average Customer Review:

List Price: \$49.99 Price: \$34.99 37 used & new from \$25.51

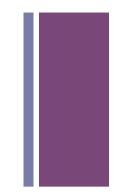
Recommended because you rated Lucene in Action (In Action serie)

+ Collaborative Filtering is ...

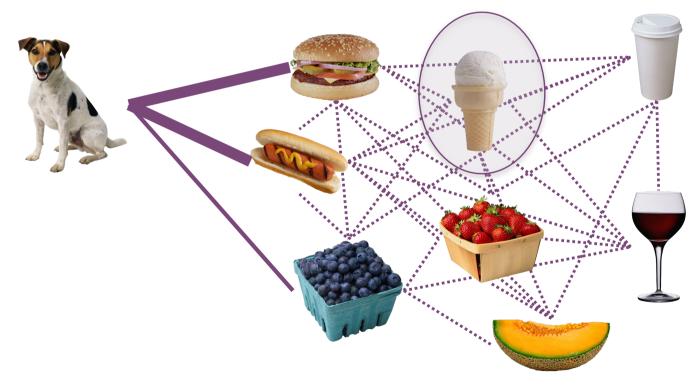


+ Recommending people food

Collaborative Filtering at Scale



Recommend items similar to a user's highly-preferred items



- Have user's preference for items
- Know all items and can compute weighted average to estimate user's preference
- What is the item item similarity notion?

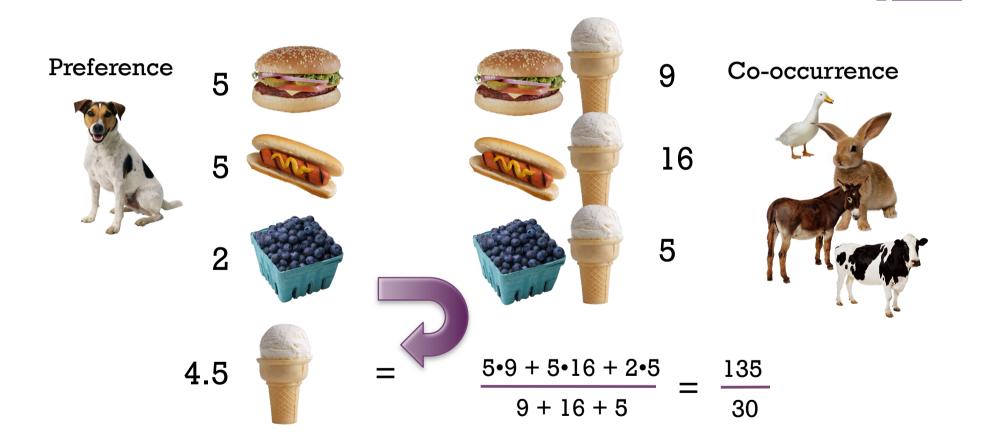
for every item i that u has no preference for yet
 for every item j that u has a preference for
 compute a similarity s between i and j
 add u's preference for j, weighted by s,
 to a running average
return the top items, ranked by weighted average

+ Item-Item Similarity

Could be based on content...

- Two foods similar if both sweet, both cold
- BUT in collaborative filtering, based only on preferences (numbers)
 - Pearson correlation between ratings ?
 - Log-likelihood ratio ?
 - Simple co-occurrence: Items similar when appearing often in the same user's set of preferences

+ Estimating preference



Collaborative Filtering at Scale

+ As matrix math

User's preferences are a vector

- Each dimension corresponds to one item
- Dimension value is the preference value

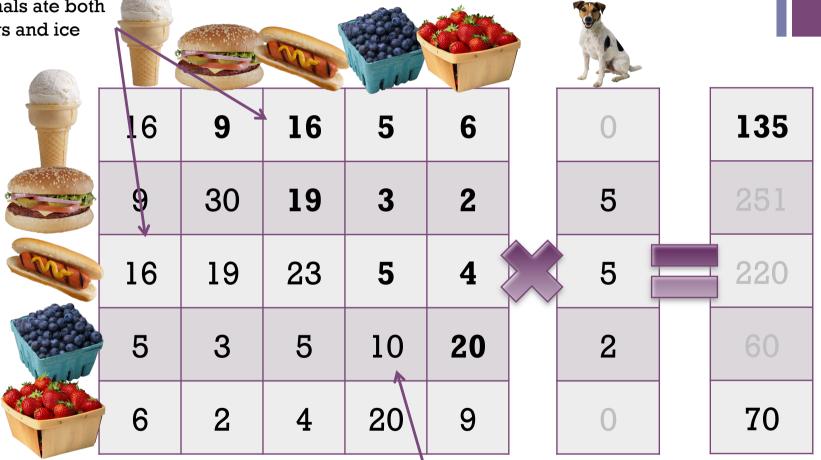
Item-item co-occurrences are a matrix

Row i / column j is count of item i / j co-occurrence

• Estimating preferences:

co-occurrence **matrix** × preference (column) **vector**

16 animals ate both hot dogs and ice cream



10 animals ate blueberries

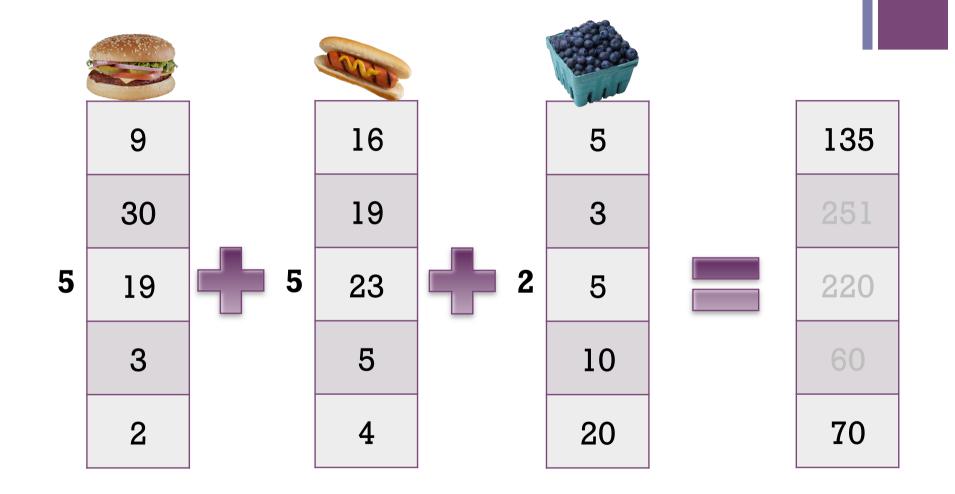
Collaborative Filtering at Scale

+ A different way to multiply

Normal: for each row of matrix

- Multiply (dot) row with column vector
- Yields scalar: one final element of recommendation vector
- Inside-out: for each element of column vector
 - Multiply (scalar) with corresponding matrix column
 - Yield column vector: parts of final recommendation vector
 - Sum those to get result
 - Can skip for zero vector elements!

+ As matrix math, again

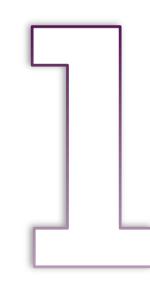


Collaborative Filtering at Scale

- 1 Input is a series of key-value pairs: (Kl,Vl)
- 2 map() function receives these, outputs 0 or more (K2, V2)
- **3** All values for each K2 are collected together
- 4 reduce() function receives these, outputs 0 or more (K3,V3)
- Very distributable and parallelizable
- Most large-scale problems can be chopped into a series of such MapReduce jobs

+ Build user vectors (mapper)

- Input is text file: user, item, preference
- Mapper receives
 - Kl = file position (ignored)
 - V1 = line of text file
- Mapper outputs, for each line
 - K2 = user ID
 - V2 = (item ID, preference)



+ Build user vectors (reducer)

- Reducer receives
 - K2 = user ID
 - V2,... = (item ID, preference), ...

Reducer outputs

- K3 = user ID
- V3 = Mahout Vector implementation
- Mahout provides custom Writable implementations for efficient Vector storage

+ Count co-occurrence (mapper)

- Mapper receives
 - Kl = user ID
 - V1 = user Vector
- Mapper outputs, for each pair of items
 - K2 = item ID
 - V2 = other item ID

+ Count co-occurrence (reducer)

- Reducer receives
 - K2 = item ID
 - V2,... = other item ID, ...
- Reducer tallies each other item; creates a Vector
- Reducer outputs
 - K3 = item ID
 - V3 = column of co-occurrence matrix as Vector

+ Partial multiply (mapper #1)

- Mapper receives
 - Kl = user ID
 - V1 = user Vector
- Mapper outputs, for each item
 - K2 = item ID
 - V2 = (user ID, preference)

+ Partial multiply (mapper #2)

Mapper receives

- Kl = item ID
- V1 = co-occurrence matrix column Vector

Mapper outputs

- K2 = item ID
- V2 = co-occurrence matrix column Vector

+ Partial multiply (reducer)

Reducer receives

- K2 = item ID
- V2,... = (user ID, preference), ...
 and co-occurrence matrix column Vector
- Reducer outputs, for each item ID
 - K3 = item ID
 - V3 = column vector and (user ID, preference) pairs

+ Aggregate (mapper)

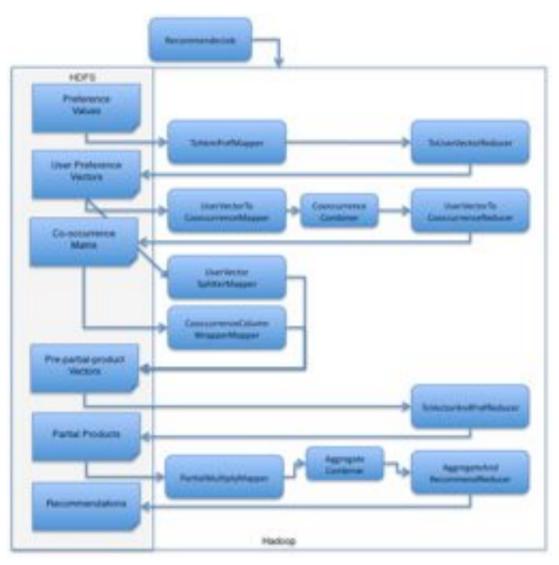
Mapper receives

- Kl = item ID
- V1 = column vector and (user ID, preference) pairs
- Mapper outputs, for each user ID
 - K2 = user ID
 - V2 = column vector times preference

+ Aggregate (reducer)

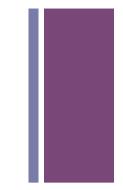
- Reducer receives
 - K2 = user ID
 - V2,... = partial recommendation vectors
- Reducer sums to make recommendation
 Vector and finds top n values
- Reducer outputs, for top value
 - K3 = user ID
 - V3 = (item ID, value)

+ Reality is a bit more complex



Collaborative Filtering at Scale

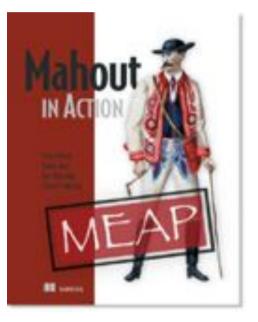
+ Ready to try



- Obtain and build Mahout from Subversion http://mahout.apache.org/versioncontrol.html
- Set up, run Hadoop in local pseudo-distributed mode
- Copy input into local HDFS
- hadoop jar mahout-0.4-SNAPSHOT.job org.apache.mahout.cf.taste.hadoop.item.RecommenderJob -Dmapred.input.dir=input
 - -Dmapred.output.dir=output

+ Mahout in Action

- Recommenders
 - Data representation
 - Non-distributed algorithms
 - Distributed algorithms
- Clustering
 - Available in weeks
- Classification
 - In progress
- http://www.manning.com/owen/



+ Questions?

- Gmail: srowen
- user@mahout.apache.org
- http://mahout.apache.org

