
Simon Willnauer & Uwe Schindler

Lucene Forecast:
Version, Unicode, Flex and Modules

Friday, June 11, 2010

Uwe Schindler (uschindler@apache.org)
 Apache Lucene/Solr PMC Member and Committer. He implemented fast

numerical search and is maintaining the new attribute-based text analysis
API. Software architect and consultant for PANGAEA (Publishing Network
for Geoscientific & Environmental Data) in Bremen, Germany.

Simon Willnauer (simonw@apache.org)
 Apache Lucene/Solr, OpenRelevance and Connectors Committer. Currently

working as a freelancer on Search, Large Data Processing and Scalability
topics. I’m a BerlinBuzzwords Co-organizer and located in Berlin.

Who we are

2

Friday, June 11, 2010

mailto:uschindler@apache.org
mailto:uschindler@apache.org
mailto:simonw@apache.org
mailto:simonw@apache.org

 Current Community Developments

 Modularization

 Version - Tale of Backwards Compatibility

 Lucene, Java, Unicode

 State of the Flex

What happens in the next 35 minutes?

3

Friday, June 11, 2010

 Merging Lucene and Solr development
 Still two separate released “products”!!!
 Share mailing list and code repository
 Solr trunk code in sync with Lucene trunk code

 Benefits to both Lucene and Solr users
 Lucene features exposed to Solr faster
 Solr features available to Lucene users
 Modules for common used components: one place for Analyzers,

Tokenizers, TokenFilters

Two projects - One Codebase

4

Friday, June 11, 2010

 Lucene 3.1 aka "branch_3x":
 Next stable release with Unicode 4.0 and supplementary character

support in Lucene Core
 Unicode 5.2 in contrib-icu using ICU 4.4, featuring rule-based

tokenization (LUCENE-1343, LUCENE-2399,
LUCENE-2409, LUCENE-2414 and others)

 Full backwards compatibility using o.a.l.util.Version parameters to most
Analyzers

 Lucene 4.0 aka "trunk" - Not Backwards-Compatible:
 Flexible Indexing
 Revised enumeration API for fields, terms, docs, positions
 Binary terms
 Attribute serialization support (unstructured payloads are gone)
 Index conversion tool, as older indexes cannot be read anymore

Lucene 3.1 vs. Lucene 4.0

5

Friday, June 11, 2010

No longer a 3.9 version with all features (like flexible
indexing), but also deprecated APIs and
"sophisticated backwards layers" (like Attributes vs.
Token in 2.9)

If you want to move, upgrade your code first

Binary index format changed, indexes can be
converted to new format, BUT: Analyzer changes may
require reindexing

Migration to new 4.0 version

6

Friday, June 11, 2010

 Common used components are moved from Lucene
and Solr into a shared place:
 Lucene Core without analysis, only abstract TokenStream and Analyzer

classes stay with a reduced set of Attributes
 New analysis module containing TokenFilters, Tokenizers, Analyzers for

various languages (moved out of Solr, Lucene Core and Lucene Contrib),
lots of custom Attributes

 Possibly separate JAR files for different language groups

 Solr's Facetting will be also available for Lucene-only
use cases

Lucene / Solr Modularization

7

Friday, June 11, 2010

 A Released-Version constant passed to constructors

 Introduced in LUCENE-1684

 Already present in Lucene 2.9
 Rarely used in released Lucene Versions
 Extensively used in Lucene 3.1 branch
 New configuration parameter in Solr's config and schema
 Created to preserve Version by Version compatibility

 public StandardAnalyzer(Version matchVersion);

Version - Tale of backwards compatibility

8

Friday, June 11, 2010

Snippet from the StandardAnalyzer JavaDoc:
You must specify the required Version compatibility when
creating StandardAnalyzer:

•As of 3.1, StopFilter correctly handles Unicode 4.0
supplementary characters in stopwords

•As of 2.9, StopFilter preserves position increments
•As of 2.4, Tokens incorrectly identified as acronyms are
corrected (see LUCENE-1068)

Version - Tale of backwards compatibility

9

Friday, June 11, 2010

 Version constants trigger:
 different runtime - behavior
 different APIs
 old buggy code :)
 different defaults

Version - Tale of backwards compatibility

10

Friday, June 11, 2010

 Upgrades to newer Lucene Releases became easier!
 re-indexing not absolutely necessary
 old behavior can be preserved where necessary
 custom code can be adopted incrementally
 get the best or both worlds

 use compatible improvements
 stick to old behavior if changes are not compatible

 Important: Don't use Version.LUCENE_CURRENT, if
you want to reuse your indexes with later Lucene
versions!

Upgrade with Version

11

Friday, June 11, 2010

�
Lucene, Java & Unicode

12

Friday, June 11, 2010

50% of the web uses Unicode

13

Friday, June 11, 2010

 Bound to Java 1.4 until Lucene 2.9
 Java 1.4 supported Unicode 3.0
 char type was created as a 16-bit entity
 each char represented a complete codepoint
 Unicode 3 - 0x0000 through 0xFFFF

Limited support for Unicode in Lucene

14

Friday, June 11, 2010

 The most of you wouldn't!

 Unless you need to index:
 Japanese
 Korean
 Places in Hong Kong
 Traditional Chinese
 Mormon books
 Ancient Greek
 ...

Unicode - Why should I care?

15

Friday, June 11, 2010

 Unicode 4 - 0x0000 through 0x10FFFF
 char is now a UTF-16 code unit, not a code point
 Unicode code points are represented as an int
 low-level APIs use int instead of char
 high level APIs now respect surrogate pairs

Unicode 4.0 support since Java 1.5

16

Friday, June 11, 2010

LowerCaseFilter Input Output
Version.LUCENE_30 𐐎𐐊𐐲𐐶 𐐎𐐊𐐲𐐶

Version.LUCENE_31 𐐎𐐊𐐲𐐶 𐐶𐐲𐐲𐐶

Can you read Deseret?

Lucene 2.9s LowerCaseFilter can't!

Unicode - What is this all about?

Friday, June 11, 2010

Try LetterTokenizer with: "the '𐆒' semuncia symbol"

LetterTokenizer Output
Version.LUCENE_30 "the", "semuncia", "symbol"

Version.LUCENE_31 "the", "𐆒", "semuncia",
"symbol"

Unicode - It is getting worse!

Friday, June 11, 2010

TokenFilter and Tokenizer take Version for
compatibility
 upgrading to 3.1 requires re-indexing in some cases
 CharTokenizer uses Version to switch API

I/O code is aware of 16 bit code units
 buffer boundaries check for high / low surrogate pairs

Unicode - What did change?

19

Friday, June 11, 2010

 Most code is ported to handle supplementary
characters correctly, but:
 StandardTokenizer still not fixed, will be renamed to:

SmartENWithSmartProductNumbersAndStupidURLDetectionWithPossesiveSMarkerTokenizer

in the future

 "RevisedStandardTokenizer" in preparation that
uses Unicode Standard Annex #29 (LUCENE-2167)

Unicode - What did change? #2

20

Friday, June 11, 2010

When will Lucene support Unicode 5.2?

21

Friday, June 11, 2010

Lucene contrib contain new ICU based Analysis tools
 ICU - Folding Filter (LUCENE-1343)

 case-folding
 accent-removal

 ICU - Normalization Filter (LUCENE-2399)
 Standard normalization modes
 custom mappings

 ICU - Transformation Filter (LUCENE-2409)
 Conversion from Traditional to Simplified Chinese characters
 Script conversions, for example Serbian Cyrillic to Latin

 See: http://svn.apache.org/repos/asf/lucene/dev/trunk/lucene/contrib/
icu

Here you go!

22

Friday, June 11, 2010

ICUTokenizer finds boundaries between certain
significant text elements: user-perceived characters,
words, and sentences.
 Recently added through LUCENE-2414
 Defaults to Unicode Standard Annex #29
 Thai (uses dictionary-based word breaking)
 Khmer, Myanmar, Lao (uses custom rules for syllabification)
 Details can be found here:

 http://unicode.org/reports/tr29/
 https://issues.apache.org/jira/browse/LUCENE-2414

Unicode based segmentation

23

Friday, June 11, 2010

“The Quick Brown Föx. Θε Κυικκ Βρουν Φοξ. ‎ت�ه�ِ ق�ُِك�ك� ب�ر�ُو�ن�
 .‎ เทกุิจกบโรวนโฟอ. Тхе Куицк Броун Фокс.טהֶ קקִֻך ברוֳן פכֳס‎ ‎.ف�ُك�س�
てへ くいっく ぶろうん ふぉくす。 Տհե Qուիծկ Բրուն Ֆոխ.

Tჰე Qუიcქ Bროwნ Fოx.”

"the", "quick", "brown", "fox", "θε", "κυικκ", "βρουν", "φοξ", ","ت�ه�
 ,"เท", "กุิ", "จกบ" ,""ق�ك�ك�", "ب�ر�و�ن�", "ف�ك�س�", "טה", "קקך", "ברון", "פכס
"โร", "วนโฟอ", "тхе", "куицк", "броун", "фокс", "て", "へ", "く",
"い", "っ", "く", "ふ", "ろ", "う", "ん", "ふ", "ぉ", "く", "す", "տհե",

"q", "ուիծկ", "բրուն", "ֆոխ", "t", "ჰე", "q", "უი", "c", "ქ", "b",
"რო", "w", "ნ", "f", "ო", "x"

ICUFoldingFilter + ICUTokenizer

Friday, June 11, 2010

Flexible Indexing - aka. Flex - API

25

Friday, June 11, 2010

Targets to make Lucene extensible even on the lowest
level

Will be >= 4.0 ONLY!

allows to
 store new information into the index
 change the way existing information is stored

Under heavy development - No stable API yet!

Replaces a lot or existing classes and interfaces

Flexible Indexing

26

Friday, June 11, 2010

The new 4 Dimensional Enumeration-API

27

Friday, June 11, 2010

 Replaces the TermEnum / TermDocs / TermPositions
 Unified iterator-like behavior: no longer strange do..while vs. while
 Improved RAM efficiency

 using byte[] instead of char[]
 compact representation of Numeric-Terms (Trie) and ASCII chars (UTF-8

bytes)
 efficient re-usage of byte buffer with the BytesRef - Class

 All Flex Enums make use of AttributeSource
 Custom Attribute deserialization
 BoostAttribute for Fuzzy Query

Flex - Enum API Properties

28

Friday, June 11, 2010

Pre-Flex Flex

TermEnum enum = ...;

do {

 Term t = enum.term();

} while(enum.next());

BytesRef termRef;

Fields fields = ...;

TermsEnum termsEnum = fields.terms(“fieldname”).iterator();

AttributeSource attrSrc = termsEnum.attributes();

BoostAttribute boostAttr = attrSrc.addAttribute(BoostAttribute.class)

Term t = new Term("title");

while ((termRef = termsEnum.next()) != null) {

 Term t = t.createTerm(termRef.utf8ToString())

 float termBoost = boostAttr.getBoost();

}

Flex Enums - an example

29

Friday, June 11, 2010

 A Codec represents the primary Flex-API extension
point

 Directly passed to SegmentsReader to decode the
index format

 Provides reader and writer for posting files

Extending Flex with Codecs

30

Friday, June 11, 2010

 Pre-Flex - Indexes will be Read Only with Lucene 4.0 (this codec is only
needed for index conversion tool - slow!)

 Standard Index Codec is moved out of o.a.l.index
 lives now in its own package o.a.l.index.codecs.standard
 is the default implementation
 similar to the pre-flex index format
 requires far less ram to load Term Index

 Additional codecs are in development (experimental)
 PForDeltaCodec
 PulsingCodec

Flex Build-In Codecs

31

Friday, June 11, 2010

Speedup with Pulsing-Codec

32

Friday, June 11, 2010

 Current State:
 with StandardCodec all tests pass
 many more tests and documentation is needed
 community feedback is highly appreciated

 Future:
 Serialize custom attributes to the index
 More RAM savings
 Improved index compression
 Faster Near-Real-Time performance
 Convert all remaining queries to use internally BytesRef-terms

Flex - Current State

33

Friday, June 11, 2010

 Flex API is still experimental
 Extensible APIs need to be implemented to improve!
 Low-Level Code including IO code is tricky

 use different OS
 use different file systems

 Spend time porting your existing applications to Flex and report back
your:
 experiences
 bugs
 speed improvements :)

Help Wanted!

34

Friday, June 11, 2010

Questions?

35

Friday, June 11, 2010

Thank you for your attention!

36

Friday, June 11, 2010

