MAKING HADOOP HIG
AVAILABLE

Using an alternative File system — HP IBRIX

Johannes Kirschnick, Steve Loughran

June 2010

SOMETHING ABOUT ME

— | work at HP Labs, Bristol, UK

- Degree in computer science, TU Munich

— Automated Infrastructure Lab
» Automated, secure, dynamic instantiation and management of cloud computing
infrastructure and services
— Personal interest
- Cloud Services
- Automated service deployment

- Storage Service

WHAT DO | WANT TO TALK ABOUT

— Motivate High Availability, intfroduce the context
— Overview about Hadoop

— Highlight the Hadoop modes of tailure operation
— Introduce HP IBRIX

— Performance Results

— Summary

CONTEXT OF THIS TALK

— High availability

» Continued availability in times of failures
— Hadoop Service

— Data operated on

— Fault tolerant operation
» What happens if a node dies

— Reduce time to restart

ADOORP IN A NUTSHELL

Example: Wordcount across a number of documents

Input Output

»

"Absoluti " 1
“"Alack " 1

map(name, document) { reduce(key, values ...) {
for each word w in document: count =0
emitintermediate(w, 1) for each value v in values:
} count+=v

emit(key,count)

}

5 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

ADOOP COMPONENTS

— Map Reduce Layer
» Provides the map and reduce programming framework
» Can break up Jobs into tasks

- Keeps track of execution status

— File system Layer
- Pluggable file system
- Support for location aware file systems
» Access through an API Layer
» Default is HDFS (Hadoop Distributed File system)

+ HDFS
— Provides fault high availability by replicating individual files

— Consists of a central metadata server — NameNode

— And a number of Data nodes, which store copies of files (or parts of them)

ADOOP OPERATION (WIT

MapReduce
Layer
File system
Layer
Master Slave Node
7 © Copyright 2010 Hewlett-Packard Development Company, L.P.

IDFS)

>
Disk

Slave Node

ADOOP OPERATION (WIT

T e

MapReduce
Layer
File system
Layer
Master Slave Node
8 © Copyright 2010 Hewlett-Packard Development Company, L.P.

IDFS)

>
Disk

Slave Node

ADOOP OPERATION (WIT

--

Location
MapReduce Information
Layer }n
File system
Layer
Master Slave Node
9 © Copyright 2010 Hewlett-Packard Development Company, L.P.

IDFS)

>
Disk

Slave Node

ADOOP OPERATION (WIT

--

Location
MapReduce Information
Layer }n
File system
Layer
Master Slave Node
10 © Copyright 2010 Hewlett-Packard Development Company, L.P.

>
Disk

Slave Node

FAILURE SCENARIOS AND RESPONSES

Failure in Map Reduce components

— TaskTracker
. Sends heartbeat to JobTracker

« If unresponsive for x seconds, JobTracker marks TaskTracker as dead and stop assigning
work to it

- Scheduler reschedules tasks running on that TaskTracker

— JobTracker

» No build in heartbeat mechanism
» Checkpoints to filesystem
» Can be restarted and resumes operation

— Individual Tasks

- TaskTracker monitors progress
. Can restart failed Tasks

» Complex failure handling
— E.g. skip parts of input data which produces failure

FAILURE SCENARIOS AND RESPONSES (2)

Failure of Data storage

— Pluggable file system implementation needs to detect and remedy error
scenarios

— HDFS

» Failure of Data Node
— Keeps track of replication count for files (parts of files)
— Can re-replicate missing pieces
— Tries to place copies of individual physically apart from each other

« Same rack vs. different racks

» Failure of NameNode
— Operations are written to logs, makes restart possible
« During restart the filesystem is in read only mode
— A secondary NameNode can periodically read these logs, to speed up time to become available

— BUT
It secondary namenode takes over, restart of the whole cluster is needed, since assigned hostnames have changed.

@

AVAILABILITY TAKEAWAY

— Map reduce Layer
» Checkpoints to the persisting file system to resume work

- TaskTracker

— Can be restarted

- JobTracker

— Can be restarted

— HDFS

- Single point of failure is the NameNode
— Restarts can take a long time, depending on amount of data stored and number of operations in the log itself

— In the regions of hours

A DIFFERENT FILE SYSTEM

— HP IBRIX

— Software solution which runs on top of storage configurations
— Fault tolerant, high availability file system

— Segmented File system

- Disks (Luns) are treated as Segments

— Segments are managed by Segment servers
- Aggregated into global file system(s)
- File systems provide single namespace

- Each file system supports up to 16 Petabyte

IBRIX IN'A NUTSHELL

Client Client Client Client

NFS, CIFS

or native

client

Performance

Fusion Manager

increase

Capacity

Disk - Disk Disk - Disk

No single metadata server / segmented file system

15 © Copyright 2010 Hewlett-Packard Development Company, L.P.

/7)) custer: 15.25.15194

Filesystems Servers Capadity

— | =———

MNavigator Filesystems

Filesystems . Hame

" myfilesystem

/endor Storage
Events
=i Clients

Segments

myfilesystem - | Segment

Events (24 hours)

OW DOES IT LOOK LIKE

00 A5 D

State Space (GB)
Mounted

Logical Volume Owner
itv1

— Fusion Manager Web Console

« Based on command line interface

528

% Space

L]
Network 10

0.00 MBi=s

Used (%)

— Global management view of the installation

Statistics | Eflogout | @ Help
Dizk IO

0.00 MBi=s

'_.’p"'l Mount 4 s¥Unmount () Delete

Generation Segments

b Assign to Tier 5% Migrate €23 Mark Bad

— Here segments correspond to disks attached to servers

OW DOES IT LOOK LIKE (2)

— A client simply mounts the file system via:

« NFS
- CIFS / Samba
- Native Client

- Each segment server is automatically a client

— Mount points and exports need to be created firsts

- on the fusion manager

— Clients access file system via “normal” file system calls

[root@vm—-18f07295-vif0 bin]# .fget_seg /myfilesystem/input-data/#

seg¥ inode # file offset local =ize version
2 200000018 i 11711119& 3600 /myfilesvystem/input-data/part-00000
3 30000001a i 11711119& 3591 /myfilesystem/input-data/part-00001
4 40000705 i 11711119& 3591 /myfilesystem/input-data/part-00002
1 100000015 i 11711119& 3591 /myfilesystem/input-data/part-00003

FAULT TOLERANT

— Supports failover
— Different hardware topologies configurations

— Couplet configuration

- Best suited for hybrid of performance and capacity

Single Namespace

18 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

'\._4

.
rg@ ;.

NZal i
$¥hadoop

Location aware Hadoop on
IBRIX

19 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

ADOOP INTERNALS — WITH IBRIX

--

vy ¥ 3

Location
MapReduce Information
Layer }n
File system
Layer
Master Slave Node Slave Node
20 © Copyright 2010 Hewlett-Packard Development Company, L.P.

PERFORMANCE TEST

— 1 GB of randomly generated data, spread across 10 input files
RandomWrriter

— Use Hadoop Sort to sort the records, measure time spend sorting

Includes mapping, sorting and reducing time

— Vary the number of slave nodes

— File access test
Actual computation on each TaskTracker is low

Governing factors for execution time are

— Time to read and write files

- Time to distribute data to the reducers

PERFORMANCE RESULTS

" Location aware IBRIX

™ Plain IBRIX

= HDFS

500
450
400

o O O o O
n O un O u
N o N N —

(39s) awi] uolNIAIXI

Number of Slaves

wlett-Packard Development Company, L.P

PERFORMANCE RESULTS

— Comparable performance to native HDFS system

» For smaller workload even increased performance - due to no replication

— Can take advantage of location information

— Is dependent on distribution and type of input data

« Across the segment servers

— Prefers many smaller files, since they can be distributed better

FURT

Single Point of Failure
Needs RAID

Can expose location
information

Individual file replication
Respond to node failure

Homogenous file system

Split files across nodes

Yes, namenode

No, replicates
Yes

Yes

Re-Replication
mark as dead

\CS

Yes - files are split into
chunks which are
distributed individually

ER FEATURE COMPARISON

No
Yes
Yes

No, only complete
filesystems

Failover
mark as dead, can

fallback

No, can define Tiers

Only if a segment is full

SUMMARY

25 © Copyright 2010 Hewlett-Packard Development Company, L.P.

SUMMARY

— Hadoop provides a number of failure handling methods

- Dependent on persistent file system

— IBRIX as alternative file system

- Not specifically build for Hadoop
— Light weight file system plug-in for Hadoop

- Location aware design enables computation close to the data
» Comparable performance while gaining on fault tolerance

- Fault tolerance persistence — no single point of failure

» Reduced storage requirement

- Storage not exclusive to Hadoop

— Future work
» Making the JobTracker failure independent
» Moving info a virtual environment

» Short lived Hadoop Cluster

27 © Copyright 2010 Hewlett-Packard Development Company, L.P.

BACKUP

28 © Copyright 2010 Hewlett-Packard Development Company, L.P.

IBRIX DETAILS

— |IBRIX uses iNodes as backend store
— Extends them by a file-based globally unique identifier

— Each Segment server is responsible for a fixed number of iNodes)
- Determined by blocksize within that segment and overall size

« Example
— 4 GB segment size, 4kb block size > 1,048,576 iNodes (1M)

- Simplified calculation example
— Where is iNode 1,800,000
— divide by TM = 1.71 - lives on segment server 1

— iNodes do not store the data but have a reference to the actual data

» Backend storage for iBrix is ext3 filesystem

MORE DETAILS

— Based on distributed iNodes

Cirect blocks

>
Disk

Crouble mdirect
Indirect blocks blocks

N

mnade
Infos
[

I =
local file system

30 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

SECURITY

— File system respects POSIX like interface

- Files belong to user/group and have read/write/execute flags

— Native Client

- Needs fo be bound to a Fusion Manager

» Export control can be enforced

— Mounting only possible from the Fusion manager console

— CIFS / Samba

- Requires Active Directory to translate windows ids to Linux id
» Export only sub path of the file system (e.g. /filesystem/sambadirectory)

— NFS
- Create exports on Segment server
» Limit clients by IP Mask
» Export only sub path of the file system (e.g. /filesystem/nfsdirectory)
» Normal NFS properties (read/write/root squash)

FEATURES

— Multiple logical file systems
- Select different segments as base for them

— Task Manager / Policy
- Rebalancing between different segment servers
- Tiering of data

— Some segments could be better/worse than others
— Move data to from them based on policy/rule

- Replicate complete logical file systems - Replicate to remote cluster

— Failover
- Buddy system of two (or more) segment servers (active/active standby)
- Native clients will automatically failover

— Growing
- Segment servers register with Fusion Manager
» New segments (discs) need to be programmatically discovered
. @i e el o gl e eyt
— |s location aware
- By nature of design
- For each file, the segment server(s) where it is stored can be determined

FEATURES (2)

— De-duplication
— Caching
- On segment server owning a particular file

— Distributed Metadata

» No single point of failure

— Supports snap shooting of whole file systems

- Creates a new virtual file system

— Policy for storing new files
+ Distribute them randomly across segment servers

- assign them to the “local” segment server

— Separate data network

» Allows to configure the network interface to use for storage communication

