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Introduction

• Lucene made great progress towards realtime search with the Near-realtime 
search feature (NRT) added in 2.9

• NRT reduces search latency (time it takes until a document becomes 
searchable) significantly, using the new IndexWriter.getReader()

• Drawback of NRT: If getReader() is called frequently, indexing performance 
decreases significantly

• New approach: Searching on IndexWriter’s/DocumentsWriter’s in-memory 
buffer directly 
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Near-realtime Search (NRT)
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Incremental Indexing

• Lucene is an incremental indexer - documents can be added to an existing, 
searchable index

• Lucene writes “segments”, which are small indexes itself

• A Lucene index consists of one or more segments

• Small segments are merged into larger ones to limit total number of segments 
per index
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Incremental Indexing

Segment 1

• After a segment is written and committed (triggered by 
IndexWriter.commit() or IndexWriter.close()) it is visible to 
IndexReaders
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Incremental Indexing

Segment 1 Segment 2

• After a segment is written and committed (triggered by 
IndexWriter.commit() or IndexWriter.close()) it is visible to 
IndexReaders

• New segments can be written, while IndexReaders execute queries on older 
segments
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Incremental Indexing

Segment 1 Segment 2 Segment 3

• After a segment is written and committed (triggered by 
IndexWriter.commit() or IndexWriter.close()) it is visible to 
IndexReaders

• New segments can be written, while IndexReaders execute queries on older 
segments
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Incremental Indexing

Segment 1 Segment 2 Segment 3

Segment 4

Segment merging
(mergeFactor=3)
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Incremental Indexing

Segment 4

Segment 1 Segment 2 Segment 3

Delete old 
segments
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Incremental Indexing

Segment 5Segment 4

Segment 1 Segment 2 Segment 3
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Incremental Indexing

Segment 5 Segment 6Segment 4

Segment 1 Segment 2 Segment 3
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Committing an index segment

• Flush in-memory data structures to index location (usually on disk) 

• Possibly trigger a segment merge

• Synchronize segment files, which forces the OS to flush those files from the 
FS cache to the physical disk (this can be an expensive operation)

• Append an entry to segments_x file and write new segment_x+1 file

• IndexWriter.close() might have to wait for in-flight segment merges to 
complete (this can be very expensive)
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Near-realtime search (NRT)

• NRT tries to avoid the two most expensive aspects of segment committing: 
file handle sync calls and waiting for segment merge completion

• IndexWriter.getReader() can be called to obtain an IndexReader, that 
can query flushed, not-yet-committed segments

• Reduces indexing latency significantly, and IndexWriters don’t have to be 
closed to (re)open IndexReaders

• Disadvantage: getReader() triggers a flush of the in-memory data 
structures
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A little bit Lucene history: LUCENE-843

• Indexer was rewritten with LUCENE-843 patch (released in 2.3)

• Indexing performance improved by 5x-10x (!!)

• Before, each document was inverted and encoded as its own segment

• These tiny single-doc segments were merged with Lucene’s standard 
SegmentMerger

• LUCENE-843 introduced class DocumentsWriter, which can take a large 
number of docs and invert them into a single segment

• Dramatic improvements in memory consumption and indexing performance
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Near-realtime search (NRT)

• IndexWriter.getReader() triggers DocumentsWriter to flush its in-memory data 
structures into a segment every time it’s called

• If called very frequently (desired in realtime search), it results in a similar 
behavior as before LUCENE-843
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Searching DocumentsWriter’s 
RAM buffer
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Goals

• Goal 1:
Allow IndexReaders to search on DocumentsWriter’s RAM buffer, while 
documents are being appended simultaneously to the same data structures

• Goal 2:
Maintain high indexing performance with large RAM buffer, and independent 
of the query load

• Goal 3:
Opening a RAM IndexReader should be so cheap, so that a new reader can 
be opened for every query (drops latency close to zero)
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LUCENE-2329: Parallel posting arrays

• Already committed to Lucene’s trunk

• Changes how per-term data is stored in RAM
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Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

Table with 6 documents

Example from:
Justin Zobel , Alistair Moffat, 
Inverted files for text search engines, 
ACM Computing Surveys (CSUR)
v.38 n.2, p.6-es, 2006  
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Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists
24Monday, June 7, 2010



Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Query: keeper 
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Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Query: keeper 
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Inverted Index

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq
and 1 <6>
big 2 <2> <3>

dark 1 <6>
did 1 <4>

gown 1 <2>
had 1 <3>

house 2 <2> <3>
in 5 <1> <2> <3> <5> <6>

keep 3 <1> <3> <5>
keeper 3 <1> <4> <5>
keeps 3 <1> <5> <6>
light 1 <6>

never 1 <4>
night 3 <1> <4> <5>
old 4 <1> <2> <3> <4>

sleep 1 <4>
sleeps 1 <6>

the 6 <1> <2> <3> <4> <5> <6>
town 2 <1> <3>
where 1 <4>

Table with 6 documents

Dictionary and posting lists

Per term we store different 
kinds of metadata: text pointer, 
frequency, postings pointer, etc.
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LUCENE-2329: Parallel posting arrays

class PostingList

int textPointer;
int postingsPointer;
int frequency;
...

• Term hashtable is an array of these objects: PostingList[] termsHash

• For each unique term in a segment we need an instance; this results in a very 
large number of objects that are long-living, i.e. the garbage collecter can’t 
remove them quickly (they need to stay in memory until the segment is 
flushed)

• With a searchable RAM buffer we want to flush much less often and allow 
DocumentsWriter to fill up the available memory
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LUCENE-2329: Parallel posting arrays

class PostingList

int textPointer;
int postingsPointer;
int frequency;
...

• Having a large number of long-living objects is very expensive in Java, 
especially when the default mark-and-sweep garbage collector is used

• The mark phase of GC becomes very expensive, because all long-living 
objects in memory have to be checked 

• We need to reduce the number of objects to improve GC performance!
-> Parallel posting arrays
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LUCENE-2329: Parallel posting arrays

PostingList[]

textPointer;

frequency;

int
int
int

postingsPointer;

30Monday, June 7, 2010



LUCENE-2329: Parallel posting arrays

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

0
1
2
3
4
5
6
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LUCENE-2329: Parallel posting arrays

0

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0 p0 f00
1
2
3
4
5
6
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LUCENE-2329: Parallel posting arrays

1

0

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0

t1

p0

p1

f0

f1

0
1
2
3
4
5
6
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LUCENE-2329: Parallel posting arrays

1

0

2

termID
int[] textPointer; frequency;postingsPointer;

int[] int[] int[]

t0

t1

t2

p0

p1

p2

f0

f1

f2

0
1
2
3
4
5
6

• Total number of objects is now greatly reduced and is 
constant and independent of number of unique terms

• With parallel arrays we safe 28 bytes per unique term  
-> 41% savings compared to PostingList object
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LUCENE-2329: Parallel posting arrays - 
Performance

• Performance experiments: Index 1M wikipedia docs

1) -Xmx2048M, indexWriter.setMaxBufferSizeMB(200)

4.3% improvement 

2) -Xmx256M, indexWriter.setMaxBufferSizeMB(200)

86.5% improvement 
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LUCENE-2329: Parallel posting arrays - 
Performance

• With large heap there is a small improvement due to per-term memory 
savings

• With small heap the garbage collector is invoked much more often - huge 
improvement due to smaller number of objects (depending on doc sizes we 
have seen improvements of up to 400%!)

• With searchable RAM buffers we want to utilize all the RAM we have; with 
parallel arrays we can maintain high indexing performance even if we get 
close to the max heap size

Goal 2:
Maintain high indexing performance with large RAM buffer, and independent 
of the query load
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InvertedDocProducerInvertedDocProducer

InvertedDocConsumer

Today: Multi-threaded Indexing chain

DocumentsWriterIndexWriter

InvertedDocProducer

InvertedDocConsumerInvertedDocConsumer

Threads

Segment

Interleave

Indexing chain
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Today: Multi-threaded Indexing chain

• The interleaving step is quite expensive

• Flushing “stops the world”: No documents can be added during flushing/
interleaving

• Multi-threaded code necessary in all IndexingChain classes, e.g. we have >10 
*PerThread classes in the indexer package
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DocumentsWriter
PerThread

DocumentsWriter
PerThread

LUCENE-2324: Single threaded indexing chain

DocumentsWriter
PerThread

IndexWriter

InvertedDocProducer

InvertedDocConsumer

InvertedDocProducer

InvertedDocConsumer

InvertedDocProducer

InvertedDocConsumer
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LUCENE-2324: Single threaded indexing chain

• Multiple per-thread DocumentsWriters write their own private segments

• Great simplification, many perThread classes can be removed (see 2324 
patch)

• DocumentsWriterPerThreads can flush independently without “stopping the 
world”; interleaving step not necessary anymore

• This change reduces the concurrency problem we need to solve for RAM 
IndexReaders to a single-writer, multi-reader problem -> lock-free algorithms 
are now possible
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Searching DocumentsWriter’s RAM buffer

• Implement an IndexReader that shares the indexes data structures with 
DocumentsWriter

• Terms hashtable is used for fast term lookup

• TermDocs/TermPositions implementation for in-memory postinglists 

• Sequence IDs for efficient deletes

• IndexReader needs to be able to switch automatically and on-the-fly from 
reader the RAM buffer to a flushed segment in case DocumentsWriter flushes 
its buffer while searches are in-flight

Goal 1:
Allow IndexReaders to search on DocumentsWriter’s RAM buffer, while 
documents are being appended simultaneously to the same data structures
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Concurrency

• Having a single writer thread simplifies our problem: no locks have to be used 
to protect data structures from corruption (only one thread modifies data)

• But: we have to make sure that all readers always see a consistent state of 
all data structures -> this is much harder than it sounds!

• In Java, it is not guaranteed that one thread will see changes that another 
thread makes in program execution order, unless the same memory barrier is 
crossed by both threads -> safe publication

• Safe publication can be achieved in different, subtle ways.  Read the great 
book “Java concurrency in practice” by Brian Goetz for more information!

• Going through all details could easily fill an entire talk.  We’ll only look into a 
few examples here.
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Concurrency - Example: term lookup

• Each reader remembers the max. docID of the last completely indexed 
document at the time the reader was opened

• For each term we store the first docIDs it occurred in.  We make sure the 
parallel array holding those first docIDs is properly initialized (visible to 
readers)

• When we lookup a term with an IndexReader, we compare the reader’s 
maxDocID with the first docID of the term; the term is only returned if 
maxDocID(reader) >= firstDocID(term); otherwise the lookup method returns 
term_not_found

• There are not “dirty reads” on integers in Java, meaning a thread either gets 
the old or the new value of a variable that another thread is writing too in 
parallel
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Concurrency - Example: term lookup

• If a reader tries to lookup a term that a writer is at the same time writing for 
the first time (term has not yet occurred in earlier documents) different things 
can happen:

-1 / 5

termID
int[] textPointer firstDocIDpostingsPointer

int[] int[] int[]

0
1
2
3
4
5
6

DocumentsWriter is currently 
adding term with ID=5; reader 

either sees -1 (initial value for all 
terms) or the new ID=5
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Concurrency - Example: term lookup

• If a reader tries to lookup a term that a writer is at the same time writing for 
the first time (term has not yet occurred in earlier documents) different things 
can happen:

-1 / 5

termID
int[] textPointer firstDocIDpostingsPointer

int[] int[] int[]

0
1
2
3
4
5
6If reader gets -1, we’re done - 

term is not found.
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Concurrency - Example: term lookup

• If a reader tries to lookup a term that a writer is at the same time writing for 
the first time (term has not yet occurred in earlier documents) different things 
can happen:

-1 / 5

termID
int[] textPointer firstDocIDpostingsPointer

int[] int[] int[]

0
1
2
3
4
5
6

If reader gets 5 we continue with 
reading the firstDocID of the 

term
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Concurrency - Example: term lookup

• If a reader tries to lookup a term that a writer is at the same time writing for 
the first time (term has not yet occurred in earlier documents) different things 
can happen:

-1 / 5

termID
int[] textPointer firstDocIDpostingsPointer

int[] int[] int[]

-1 / 10

0
1
2
3
4
5
6

If reader sees -1 (initial value for 
all firstDocIDs) then it returns 

term_not_found
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Concurrency - Example: term lookup

• If a reader tries to lookup a term that a writer is at the same time writing for 
the first time (term has not yet occurred in earlier documents) different things 
can happen:

-1 / 5

termID
int[] textPointer firstDocIDpostingsPointer

int[] int[] int[]

-1 / 10

0
1
2
3
4
5
6

If reader sees e.g. docID=10 it 
compares it with its maxDocID.  
If the doc was added after the 
reader was opened, it will stop 

here too and return 
term_not_found; otherwise it’s 

safe to access the term’s 
postinglist (see next slide)
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Concurrency - Example: term lookup

• After each document is fully indexed the writer thread is forced to cross a 
memory barrier

• When a reader is opened the opening thread is also forced to cross the same 
memory barrier 

• A memory barrier can be as simple as a single volatile variable that multiple 
threads access

• Hence, visibility for all documents older than maxDocID is ensured for an 
IndexReader
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Sequence IDs
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IndexWriter API

• void addDocument(Document doc);

• void updateDocument(Term delTerm, Document doc);

• void deleteDocuments(Term delTerm);

• void commit();

• All these methods are thread-safe

• But: in which order are they executed?
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IndexWriter API - Example

Thread 1:

addDoc(doc1);
addDoc(doc2);

Thread 2:

deleteDocs(term);

• Problem: Will Thread 2 only delete doc1 or also doc2?  Which state will the 
reader that Thread 3 opens “see”?

• Answer: It depends on Java’s thread scheduling which thread acquires the 
mutex first.

• It’s currently hard to write code that can track the order of calls and answer 
the question above.

term occurs in 
both docs

Thread 3:

IW.getReader();
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IndexWriter API

• void addDocument(Document doc);

• void updateDocument(Term delTerm, Document doc);

• void deleteDocuments(Term delTerm);

• void commit();

• long

• long

• long

• long

• All methods will return a sequence ID, which unambiguously indicate the 
order the operations were executed in

• An RAM IndexReader will also have a sequence ID that defines which 
snapshot of the index it can “see”
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IndexWriter API - Example

Thread 1:

addDoc(doc1);
addDoc(doc2);

Thread 2:

deleteDocs(term);

• doc1 is added before delete; delete happens before doc 2 is added

• Thread 3’s reader will see doc 1

Thread 3:

IW.getReader();
1

3 2 1
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IndexWriter API - Example

Thread 1:

addDoc(doc1);
addDoc(doc2);

Thread 2:

deleteDocs(term);

• doc1 is added before delete; delete happens before doc 2 is added

• Thread 3’s reader will only see doc 2 (doc 1 will appear as deleted)

Thread 3:

IW.getReader();
1

3 2 3
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IndexWriter API - Example

Thread 1:

addDoc(doc1);
addDoc(doc2);

Thread 2:

deleteDocs(term);

• doc1 is added before doc2; delete happens after both docs are added

• Thread 3’s reader will see both docs

Thread 3:

IW.getReader();
1

2 3 2
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IndexWriter API - Example

Thread 1:

addDoc(doc1);
addDoc(doc2);

Thread 2:

deleteDocs(term);

• doc1 is added before doc2; delete happens after both docs are added

• Thread 3’s reader will not see any docs (both will appear as deleted)

Thread 3:

IW.getReader();
1

2 3 3
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• Today deletes are stored as BitSets

Segment
9 docs

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

X

deleteDoc(2);

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

X X

deleteDoc(2);
deleteDoc(5);

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1

X X

IndexReader1

X X

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);

IndexReader1

X X

X XX

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

X X

X XX

IndexReader2

X XX

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

X X

X XX

IndexReader2

X XX

!=

Deletes
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• Today deletes are stored as BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

X X

X XX

IndexReader2

X XX

!=

we can’t share the same 
BitSet -> cloning necessary

Deletes
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Deletes

• Each IndexReader may need its own copy of the BitSet

• Especially for large segments the cloning quickly becomes very inefficient, if 
deletes and IndexReader (re)opens are frequent

• Solution: Utilize sequence IDs instead of BitSets
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);

1

1
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);

1 2

1
2
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1

IndexReader1

1 2

1 2

1
2

2
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);

IndexReader1

1 23

1 23

1
2

2

3
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

1 23

IndexReader2
1 23 1 23

1
2

2

3

3
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Utilizing Sequence IDs for memory efficient deletes

• LUCENE-2324: Use array of sequence IDs instead of BitSets

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

1 23

IndexReader2
1 23 1 23

1
2

2

3

3

==

the same seqID array can be 
shared now
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Utilizing Sequence IDs for memory efficient deletes

Segment
9 docs

deleteDoc(2);
deleteDoc(5);
open IndexReader1
deleteDoc(0);
open IndexReader2

IndexReader1

1 23

IndexReader2
1 23 1 23

1
2

2

3

3

boolean isDeleted = (seqId[doc] <= readerSeqID);

Reader1: seqId[0] = 3, readerSeqID = 2 -> isDeleted = false
Reader2: seqId[0] = 3, readerSeqID = 3 -> isDeleted = true

• LUCENE-2324: Use array of sequence IDs instead of BitSets
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• No cloning necessary anymore

• Memory consumption for deletes does not increase when many 
IndexReaders are opened

Goal 3:
Opening a RAM IndexReader should be so cheap, so that a new reader can 
be opened for every query (drops latency close to zero)

Utilizing Sequence IDs for memory efficient deletes
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• Lucene’s IndexWriter handles two kinds of exceptions: Aborting exceptions 
(e.g. OutOfMemoryError) and non-aborting exceptions (e.g. document 
encoding problem)

• When an aborting exception occurs, then the IndexWriter tries to commit all 
docs to the index that were successfully flushed before the error occurred

• Problem: Today it’s not possible to know which documents made it into the 
index and which ones were dropped due to the error.  Which docs do I have 
to reindex?

• Solution: IndexWriter.commit() will also return the sequence ID of the 
last write operation (add, delete, update) that was committed

Using sequence IDs for document tracking
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• An external log can be used to replay all operations that were lost due to the 
aborting exception

• It’s easy to find out which write operations need to be replayed by checking 
the sequence ID that commit() returns

Using sequence IDs for document tracking
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Realtime Search with Lucene

Agenda

- Introduction

- Near-realtime Search (NRT)

- Searching DocumentsWriter’s RAM buffer

- Sequence IDs

‣ Twitter prototype

- Roadmap
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Twitter prototype
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• Tweets are only 140 chars long

• Use 32-bit integers for postings:  24 bits for the docID (max segment size is 
16.7M docs), 8 bits for the position (position can only have values 0-255; 
enough for tweets)

• Decoding speed significantly improved compared to delta and VInt decoding 
(early experiments suggest 5x improvement compared to vanilla Lucene with 
FSDirectory)

• In-memory postinglists can be traversed in reverse order -> early termination 
if time is a dominant factor of ranking score (as it usually is in realtime search)

Postinglist format
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• On a single machine we can (without much tuning yet):

• Index ~60,000 tweets/sec (very simple text analysis in the prototype)

• Search with ~15,000-20,000 queries/sec

• Lock-free algorithm: Results show, that indeed indexing and search 
performance are independent

Early performance experiments
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TPS

Time

Early performance experiments

TPS

Time

Indexing with one thread 
while querying with 
multiple threads

Only indexing with one 
thread
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Early performance experiments

TPS

QPS

Indexing performance 
over varying query load

• No “trend” here: indexing performance pretty much independent of query 
load

• TPS goes down only if more threads are used than CPU cores are present, 
because thread scheduling becomes expensive

Goal 2:
Maintain high indexing performance with large RAM buffer, and independent 
of the query load
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Roadmap
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• LUCENE-2329: Parallel posting arrays

• LUCENE-2324: Per-thread DocumentsWriter and sequence IDs

• LUCENE-2346: Change in-memory postinglist format

• LUCENE-2312: Search on DocumentsWriters RAM buffer

• IndexReader, that can switch from RAM buffer to flushed segment on-the-fly

• Sorted term dictionary (wildcards, numeric queries)

• Stored fields, TermVectors, Payloads (Attributes)

Roadmap
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Realtime Search with Lucene

Questions?

Michael Busch
@michibusch
michael@twitter.com 
buschmi@apache.org
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