Nutch as a Web mining platform
the present and the future

Andrzej Biatecki
ab@sigram.com

S SIGRAM

mailto:ab@sigram.com

Nutch — Berlin Buzzwords '10

Intro

» Started using Lucene in 2003 (1.2-dev?)
 Created Luke — the Lucene Index Toolbox

 Nutc
 Nutc

N, Lucene committer, Lucene PMC member

N project lead

Nutch — Berlin Buzzwords '10

Agenda

* Nutch architecture overview

* Crawling in general — strategies and challenges
* Nutch workflow

* WWeb data mining with Nutch

with examples

* Nutch present and future
* Questions and answers

Nutch — Berlin Buzzwords '10

Apache Nutch project

* Founded in 2003 by Doug Cutting, the Lucene
creator, and Mike Cafarella

* Apache project since 2004 (sub-project of Lucene)
* Spin-offs:

- Map-Reduce and distributed FS — Hadoop

- Content type detection and parsing — Tika

* Many installations in operation, mostly vertical
search

» Collections typically 1 min - 200 min documents
* Apache Top-Level Project since May
* Current release 1.1

Nutch — Berlin Buzzwords '10
R - . .

What's in a search engine?

... a few things that may surprise you! ©

Nutch — Berlin Buzzwords '10

Search engine building blocks

Injector Schedulerz> Crawler Searcher] <:> 2@9

3 3

Web graph
-page info
-links (in/out)
-~

@ Updater @

> O

v

Content
repository

A S S,

Crawling frontier controls

Nutch — Berlin Buzzwords '10

Nutch features at a glance
* Plugin-based, highly modular:

« Most behaviors can be changed via plugins
» Data repository:
- Page status database and link database (web graph)
- Content and parsed data database (shards)
* Multi-protocol, multi-threaded, distributed crawler
» Robust crawling frontier controls

» Scalable data processing framework
« Hadoop MapReduce processing

* Full-text indexer & search front-end

« Using Solr (or Lucene)
« Support for distributed search

* Flexible integration options

Nutch — Berlin Buzzwords '10

Search engine building blocks

Injector Schedulerz> Crawler Searcher] <:> 2@9

3 3

Web graph
-page info
-links (in/out)
-~

@ Updater @

> O

v

Content
repository

A S S,

Crawling frontier controls

Nutch — Berlin Buzzwords '10

& Nutch building blocks

Injector Generatorz> Fetcher Searcher] <:> g‘h@

L > O

<5

@Updater@;rds/ < Indexer
e o e
w Inverter

A S S S

~ URL filters & normalizers, parsing/indexing filters, scoring plugins |

Nutch — Berlin Buzzwords '10

i% Nutch data

_ Maintains info on all known URL-s: l> gg
Injector | Generatol « Fetch schedule 66@
» Fetch status
@ ﬁ « Page signature
 Metadata T
rawIDB Ker

X Shards

(segments)
Link @ Parser
w mverter

A S S S

~ URL filters & normalizers, parsing/indexing filters, scoring plugins |

10

Nutch — Berlin Buzzwords '10

i% Nutch data

Injector Generatof For each target URL keeps info on l> 6@
incoming links, i.e. list of source &

@ ﬁ URL-s and their associated anchor
text

—

(segments)
Link <
LinkDB

Inverter
~ URL filters & normalizers, parsing/indexing filters, scoring plugins |

h o f D

11

Nutch — Berlin Buzzwords '10

a% Nutch data

Shards (“segments™) keep: g
. Raw page content stcher [Searcher] (— 668
e Parsed content + discovered @ ﬁ

metadata + outlinks

« Plain text for indexing and 2(>

snippets <:> Indexer
Shards

.@ Link iegmenti) <:> Parser
m Inverter

A S S S

~ URL filters & normalizers, parsing/indexing filters, scoring plugins |

Nutch — Berlin Buzzwords '10

Shard-based workflow

* Unit of work (batch) — easier to process massive datasets

« Convenience placeholder, using predefined directory names
« Unit of deployment to the search infrastructure

- Solr-based search may discard shards once indexed

* Once completed they are basically unmodifiable
- No in-place updates of content, or replacing of obsolete content

« Periodically phased-out by new, re-crawled shards
- Solr-based search can update Solr index in-place

Generator

Fetcher

Parser

Indexer

HHH;

200904301234/

crawl generate/
crawl fetch/

>

content/
crawl parse/
parse _data/

“cached” view

>

parse_ text/

snippets

13

Crawling frontier challenge

* No authoritative catalog of web pages
« Crawlers need to discover their view of web universe
« Start from “seed list” & follow (walk) some (useful? interesting?) outlinks
 Many dangers of simply wandering around
 explosion or collapse of the frontier; collecting unwanted content (spam,
junk, offensive

"I need a few
interesting .
items...

Nutch — Berlin Buzzwords '10

High-quality seed list

 Reference sites:
- Wikipedia, FreeBase, DMOZ
- Existing verticals

» Seeding from existing
search engines

- Collect top-N URL-s for
characteristic keywords

 Seed URL-s plus 1:

- First hop usually retains high-
quality and focus

- Remove blatantly obvious junk

15

seed + 1 hop

15

Controlling the crawling frontier

» URL filter plugins
- White-list, black-list, regex
- May use external resources
(DB-s, services ...)

 URL normalizer plugins

- Resolving relative path
elements

- “Equivalent” URLs

 Additional controls

- priority, metadata select/block

- Breadth first, depth first,
per-site mixed ...

Nutch — Berlin Buzzwords '10

16

Nutch — Berlin Buzzwords '10

Wide vs. focused crawling

 Differences:
- Little technical difference in configuration
- Big difference in operations, maintenance and quality

* Wide crawling:
 (Almost) Unlimited crawling frontier
 High risk of spamming and junk content

+ “Politeness” a very important limiting factor
« Bandwidth & DNS considerations

* Focused (vertical or enterprise) crawling:
 Limited crawling frontier
« Bandwidth or politeness is often not an issue
« Low risk of spamming and junk content

17

Nutch — Berlin Buzzwords '10

Vertical & enterprise search

* Vertical search
- Range of selected “reference” sites
- Robust control of the crawling frontier
- Extensive content post-processing
- Business-driven decisions about ranking

* Enterprise search
- Variety of data sources and data formats
- Well-defined and limited crawling frontier
- Integration with in-house data sources
- Little danger of spam
- PageRank-like scoring usually works poorly

g"c Face to face with Nutch

25k

’—‘ Nutch — Berlin Buzzwords '10

19

Nutch — Berlin Buzzwords '10

N
o

Installation & basic config

* http://nutch.apache.org
* Java 1.5+

» Single-node out of the box
- Comes also as a “job” jar to run on existing Hadoop cluster

* File-based configuration: conf/
- Plugin list
- Per-plugin configuration

e ... much, much more on this on the Wiki

20

http://nutch.apache.org/

Nutch — Berlin Buzzwords '10

(repeat)

Main Nutch workflow

* Inject: initial creation of CrawlDB
- Insert seed URLs
- Initial LinkDB is empty

Generate new shard's fetchlist
Fetch raw content

Parse content (discovers outlinks)
Update CrawlDB from shards
Update LinkDB from shards
Index shards

Command-line:

bin/nutch

inject

generate
fetch
parse
updatedb
invertlinks

index /

solrindex

21

Nutch — Berlin Buzzwords '10

%« Injecting new URL-s

[Injector} [Generator}@[Fetcher} [Searcher] <:> 2@8
~ O U &

~— N A
ECrawlDBj @Updater@ Shards ~ Indexer

(segments)
>) Link - . Parser
invlenrter S

0 S ST S SO

URL filters & normalizers, parsing/indexing filters, scoring plugins

22

Nutch — Berlin Buzzwords '10

% Generating fetchlists

Injector} [Generator
Il ~ff U {
- S

ECrawlDBj @ Updater Shards
e) B
w Inverter

0 S ST S SO

URL filters & normalizers, parsing/indexing filters, scoring plugins

23

Nutch — Berlin Buzzwords '10

gc Fetching content

[Injector} [Generator} Fetcher] [Searcher] — @;‘g
-

> =
e e
e) e
m Inverter

0 S ST S SO

URL filters & normalizers, parsing/indexing filters, scoring plugins

24

Nutch — Berlin Buzzwords '10

%« Content processing

[Injector} [Generator}@[Fetcher} [Searcher] Ca— 2@8
U 4 U 0

<5 . =
@ Indexer
@ Updater @ Shards
(segments)
- Link g‘ Parser]
mverter — v

ST (ST ST

URL filters & normalizers, parsing/indexing filters, scoring plugins

25

Nutch — Berlin Buzzwords '10

% Link inversion

Injector} Generator}@ Fetcher} [Searcher] <:> 2@8
@- . g @ <=
@Updater@ Shards IeIE2Es

(segments)
Link - B <:> Parser
LinkDB inverter

/e S ST A S SO

URL filters & normalizers, parsing/indexing filters, scoring plugins

26

Nutch — Berlin Buzzwords '10

g« Page importance - scoring

Injector Generatorz> Fetcher Searcher] <:> :@;@

. > O

< Indexer
ECrawIDB Updater < | -
(segments)
E Link < Parser
w
LinkDB iInverter

A S

~ URL filters & normalizers, parsing/indexing filters, scoring plugins |

27

Nutch — Berlin Buzzwords '10

gc Indexing

[Injector} [Generator}@[Fetcher] [Searcher] (— $é@
g £ : .
= N
C— 3 nd
CrawIDB @Updater@ naexer
Shards |q—0U 7

(segments)
<:j Link \
LinkDB iInverter

A S 1

e

URL filters & normalizers, parsing/indexing filters, scoring plugins

28

Nutch — Berlin Buzzwords '10

Map-reduce indexing

* Map() just assembles all parts of documents

* Reduce() performs text analysis + indexing:
- Sends assembled documents to Solr
or
- Adds to a local Lucene index

* Other possible MR indexing models:

- Hadoop contrib/indexing model:
 analysis and indexing on map() side
 Index merging on reduce() side

— Modified Nutch model:

« Analysis on map() side
 Indexing on reduce() side

29

Nutch — Berlin Buzzwords '10

Nutch integration

* Nutch search & tools API
- Search via REST-style interaction, XML / JSON response
- Tools CLI and API to access bulk & single Nutch items
- Single-node, embedded, distributed (Hadoop cluster)

» Data-level integration: direct MapkFile /

SequencekFile reading
- More complicated (and still requires using Nutch classes)
- May be more efficient
- Future: native tools related to data stores (HBase, SQL, ...)

* Exporting Nutch data

- All data can be exported to plain text formats
- bin/nutch read*
e ...db —read CrawlDB and dump some/all records
e ...1inkdb —read LinkDb and dump some/all records
 ...seg — read segments (shards) and dump some/all records 30

Nutch — Berlin Buzzwords '10

Web data mining with Nutch

Nutch — Berlin Buzzwords '10

w
o

Nutch search

» Solr indexing and searching (preferred)
- Simple Lucene indexing / search available too

» Using Solr search:
- DisMax search over several fields (url, title, body, anchors)
- Faceted search

- Search results clustering
- SolrCloud:

« Automatic shard replication and load-balancing
- Hashing update handler to distribute docs to Solr shards

32

Nutch — Berlin Buzzwords '10

Search-based analytics

« Keyword search — crude topic mining
* Phrase search — crude collocation mining
* Anchor search — crude semantic enrichment

* Feedback loop from search results:
- Faceting and on-line clustering may discover latent topics
- Top-N results for reference queries may prioritize further crawling

« Example: question answering system
- Source documents from reference sites

- NLP document analysis: key-phrase detection, POS-tagging,
noun-verb / subject-predicate detection, enrichment from DBs
and semantic nets

- NLP query analysis: expected answer type (e.g. person, place,
date, activity, method, ...), key-phrases, synonyms

- Regular search
- Evaluation of raw results (further NLP analysis of each document) ..,

Nutch — Berlin Buzzwords '10

Web as a corpus

* Examples:
- Source of raw text in a specific language

- Source of text on a given subject
« Selection by e.g. a presence of keywords, or full-blown NLP

- Add data from known reference sites (Wikipedia, Freebase) or
databases (Medline) or semantic nets (WordNet, OpenCyc)

- Source of documents in a specific format (e.g. PDF)
* Nutch setup:

- URLFilters define the crawling frontier and content types

- Parse plugins determine the content extraction / processing
 e.g. language detection

 Nutch shards:

- Extracted text, metadata, outlinks / anchors

34

Nutch — Berlin Buzzwords '10

Web as a corpus (2)

» Concept mining
- Harvesting human-created concept descriptions and
associations
- “kind of”, “contains”, “includes”, “application of”
- Co-occurrence of concepts has some meaning too!

 Example: medical search engine
- Controlled vocabulary of diseases, symptoms, procedures

- |dentifiable metadata: author, journal, publication date, etc.

- Nutch crawl of reference sites and DBs

« Co-occurrence of controlled vocabulary
- BloomFilter-s for quick trimming of map-side data
- Or Mahout collocation mining for uncontrolled concepts
« Cube of co-occurring (related) concepts
« Several dimensions to traverse
- “authors who publish most often together on treatment of myocardial infarction”

« 10 nodes, 100k phrases in vocabulary, 20 min pages, ~300bln
phrases on map side — ~5GB data cube

35

Web as a directed graph

Nutch — Berlin Buzzwords '10

Nodes (vertices): URL-s as unique identifiers
Edges (links): hyperlinks like
Edge labels: <a href=
Often represented as adjacency (neighbor) lists
Inverted graph: LinkDB in Nutch

>anchor text

Straight (outlink) graph:
1 — 2a, 3b, 4c, 5d, 6e

5 — 6f, 99

7 — 3h, 4i, 8j, 9k

Inverted (inlink) graph:
2 —1a

3« 1b, 7h

4 —1c, 7i

5« 1d

6 — 1e, 5f

8 «— 7]

O « 5g, 7k
36

Nutch — Berlin Buzzwords '10

Link inversion

» Pages have outgoing links (outlinks)
... | know where I'm pointing to

* Question: who points to me?
... I don't know, there is no catalog of pages

... NOBODY knows for sure either!
* In-degree may indicate importance of the page
* Anchor text provides important semantic info

 Answer: invert the outlinks that | know about,
and group by target (Nutch 'invertlinks')

37

Nutch — Berlin Buzzwords '10

Web as a recommender

* Links as recommendations:
- Link represents an association
- Anchor text represents a recommended topic
« ... with some surrounding text of a hyperlink?
* Not all pages are created equal
- Recommendations from good pages are useful
- Recommendations from bad pages may be useless
- Merit / guilt by association:
 Links from good pages should improve the target's reputation
 Links from bad pages may compromise good pages' reputation
* Not all recommendations are trustworthy
- What links to trust, and to what degree?

- Social aspects: popularity, fashion, mobbing, fallacy of
“common belief”

38

Nutch — Berlin Buzzwords '10

Link analysis and scoring

* PageRank
- Query-independent page weight
- Based on the flow of weight along link paths

« Dampening factor a to stabilize the flow
« Weight from “dangling nodes” redistributed

* Other models
- Hyperlink-Induced Topic Search (HITS)

* Query-dependent, local iterations, hub/authority

- TrustRank

* Propagation of “trust” based on human expert
evaluation of seed sites

* Challenges

- Loops, link spam, cliques, loosely connected
subgraphs, mobbing, etc

1

!

1

1.25

1.25

0.75

0.75

1.06

1.31

el -t

0.69

0.94

39

Nutch — Berlin Buzzwords '10

Nutch link analysis tools

* Tools for PageRank calculation with loop detection
- LinkDDb: source of anchor text (think “recommended topics”)
- Page in-degree = popularity / importance / quality
- Scoring API (and plugins) to control the flow of page importance
along link paths

* Nutch shards:
- Source of outlinks — expanding the crawling frontier
- Page linked-ness vs. its content: hub or authority
 Example: porn / junk detection
- Links to “porn” pages poisonous to importance / quality
- Links from “porn” pages decrease the confidence in quality of the
target page
 Example: vertical crawl
- Expanding to pages “on topic” == with sufficient in-link support
from known on topic pages

40

Nutch — Berlin Buzzwords '10

Web of gossip and opinions

» General Web — not considering special-purpose
networks here...

* Example:
- Who / what is in the news?

- How often a name is mentioned?
« today Google yields 44,500 hits for ab@getopt.org ©

- What facts about me are publicly available”?
- What is the sentiment associated with a name (person,
organization, trademark)?

* Nutch setup:
- Seed from a few reference news sites, blogs, Twitter, etc
- Use Nutch plugin for RSS/Atom crawling
- NLP parsing plugins (NER, classification, sentiment analysis)

 Nutch shards:

- Capture temporal aspect
41

mailto:ab@getopt.org

Nutch — Berlin Buzzwords '10

Web as a source of ... anything

* The data is there, just lost among irrelevant stuff
- Difficult to find — good seed list + crawling frontier controls
- Mixed with junk & irrelevant data — URL & content filtering

* Be creative — combine multiple strategies:
- Crawl for raw data, stay on topic — filter out junk early
- Use plain indexing & search as a crude analytic tool
- Use creative post-processing to filter and enhance the data

- Export data from Nutch and pipe it to other tools (Pig,
HBase, Mahout, ...)

42

Nutch — Berlin Buzzwords '10

Future of Nutch

* Nutch 2.0 re-design

Refactoring, cleanup, better scale-up / scale-down
Avoid code duplication
Expected release ~Q4 2010

» Share code with other crawler projects —

crawler-commons

* Indexing & Search — Solr, SolrCloud

Distributed and replicated search is difficult
Initial integration needs significant improvement
Shard management — SolrCloud / Zookeeper

* Web-graph & page repository — ORM layer

Combine CrawlDB, LinkDB and shard storage
Avoid tedious shard management

Gora ORM mapping: HBase, SQL, Cassandra? BerkeleyDB?
Benefit from native tools specific to storage — easier integration

43

Nutch — Berlin Buzzwords '10

Future of Nutch (2)

 \What's left then?

- Crawling frontier management, discovery

- Re-crawl algorithms

- Spider trap handling

- Fetcher

- Ranking: enterprise-specific, user-feedback

- Duplicate detection, URL aliasing (mirror detection)

- Template detection and cleanup, pagelet-level crawling
- Spam & junk control

* Vision: a la carte toolkit, scalable from
1-1000s nodes

- Easier setup for small 1 node installs
- Focus on a reliable, easy to integrate framework

44

Nutch — Berlin Buzzwords '10

Conclusions

(This overview is a tip of the iceberg)

Nutch

* Implements all core search engine components

» Extremely configurable and modular

» Scales well

A complete crawl & search platform — and a toolkit

» Easy to use as an input feed to data collecting and
data mining tools

45

Nutch — Berlin Buzzwords '10

Q& A

* Further information:
- http://nutch.apache.org/
- user@nutch.apache.org

» Contact author:
- ab@sigram.com

46

http://nutch.apache.org/
mailto:user@nutch.apache.org
mailto:ab@sigram.com

	Slajd1
	Slajd 2
	Slajd 3
	Slajd 4
	Overview
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46

