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Intro

» Started using Lucene in 2003 (1.2-dev?)
 Created Luke — the Lucene Index Toolbox

 Nutc
 Nutc

N, Lucene committer, Lucene PMC member

N project lead
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Agenda

* Nutch architecture overview

* Crawling in general — strategies and challenges
* Nutch workflow

* WWeb data mining with Nutch

with examples

* Nutch present and future
* Questions and answers
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Apache Nutch project

* Founded in 2003 by Doug Cutting, the Lucene
creator, and Mike Cafarella

* Apache project since 2004 (sub-project of Lucene)
* Spin-offs:

- Map-Reduce and distributed FS — Hadoop

- Content type detection and parsing — Tika

* Many installations in operation, mostly vertical
search

» Collections typically 1 min - 200 min documents
* Apache Top-Level Project since May
* Current release 1.1
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What's in a search engine?

... a few things that may surprise you! ©
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Search engine building blocks
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Nutch features at a glance
* Plugin-based, highly modular:

« Most behaviors can be changed via plugins
» Data repository:
- Page status database and link database (web graph)
- Content and parsed data database (shards)
* Multi-protocol, multi-threaded, distributed crawler
» Robust crawling frontier controls

» Scalable data processing framework
« Hadoop MapReduce processing

* Full-text indexer & search front-end

« Using Solr (or Lucene)
« Support for distributed search

* Flexible integration options
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& Nutch building blocks
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i% Nutch data
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i% Nutch data
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a% Nutch data
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Shard-based workflow

* Unit of work (batch) — easier to process massive datasets

« Convenience placeholder, using predefined directory names
« Unit of deployment to the search infrastructure

- Solr-based search may discard shards once indexed

* Once completed they are basically unmodifiable
- No in-place updates of content, or replacing of obsolete content

« Periodically phased-out by new, re-crawled shards
- Solr-based search can update Solr index in-place

Generator

Fetcher

Parser

Indexer

HHH;

200904301234/

crawl generate/
crawl fetch/

>

content/
crawl parse/
parse _data/

“cached” view

>

parse_ text/

snippets
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Crawling frontier challenge

* No authoritative catalog of web pages
« Crawlers need to discover their view of web universe
« Start from “seed list” & follow (walk) some (useful? interesting?) outlinks
 Many dangers of simply wandering around
 explosion or collapse of the frontier; collecting unwanted content (spam,
junk, offensive

"I need a few
interesting .
items...
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High-quality seed list

 Reference sites:
- Wikipedia, FreeBase, DMOZ
- Existing verticals

» Seeding from existing
search engines

- Collect top-N URL-s for
characteristic keywords

 Seed URL-s plus 1:

- First hop usually retains high-
quality and focus

- Remove blatantly obvious junk

15

seed + 1 hop
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Controlling the crawling frontier

» URL filter plugins
- White-list, black-list, regex
- May use external resources
(DB-s, services ...)

 URL normalizer plugins

- Resolving relative path
elements

- “Equivalent” URLs

 Additional controls

- priority, metadata select/block

- Breadth first, depth first,
per-site mixed ...

Nutch — Berlin Buzzwords '10
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Wide vs. focused crawling

 Differences:
- Little technical difference in configuration
- Big difference in operations, maintenance and quality

* Wide crawling:
 (Almost) Unlimited crawling frontier
 High risk of spamming and junk content

+ “Politeness” a very important limiting factor
« Bandwidth & DNS considerations

* Focused (vertical or enterprise) crawling:
 Limited crawling frontier
« Bandwidth or politeness is often not an issue
« Low risk of spamming and junk content

17
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Vertical & enterprise search

* Vertical search
- Range of selected “reference” sites
- Robust control of the crawling frontier
- Extensive content post-processing
- Business-driven decisions about ranking

* Enterprise search
- Variety of data sources and data formats
- Well-defined and limited crawling frontier
- Integration with in-house data sources
- Little danger of spam
- PageRank-like scoring usually works poorly




g"c Face to face with Nutch

25k
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N
o

Installation & basic config

* http://nutch.apache.org
* Java 1.5+

» Single-node out of the box
- Comes also as a “job” jar to run on existing Hadoop cluster

* File-based configuration: conf/
- Plugin list
- Per-plugin configuration

e ... much, much more on this on the Wiki

20


http://nutch.apache.org/

Nutch — Berlin Buzzwords '10

(repeat)

Main Nutch workflow

* Inject: initial creation of CrawlDB
- Insert seed URLs
- Initial LinkDB is empty

Generate new shard's fetchlist
Fetch raw content

Parse content (discovers outlinks)
Update CrawlDB from shards
Update LinkDB from shards
Index shards

Command-line:

bin/nutch

inject

generate
fetch
parse
updatedb
invertlinks

index /

solrindex

21
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%« Injecting new URL-s
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% Generating fetchlists
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%« Content processing
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% Link inversion
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g« Page importance - scoring
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Map-reduce indexing

* Map() just assembles all parts of documents

* Reduce() performs text analysis + indexing:
- Sends assembled documents to Solr
or
- Adds to a local Lucene index

* Other possible MR indexing models:

- Hadoop contrib/indexing model:
 analysis and indexing on map() side
 Index merging on reduce() side

— Modified Nutch model:

« Analysis on map() side
 Indexing on reduce() side

29
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Nutch integration

* Nutch search & tools API
- Search via REST-style interaction, XML / JSON response
- Tools CLI and API to access bulk & single Nutch items
- Single-node, embedded, distributed (Hadoop cluster)

» Data-level integration: direct MapkFile /

SequencekFile reading
- More complicated (and still requires using Nutch classes)
- May be more efficient
- Future: native tools related to data stores (HBase, SQL, ...)

* Exporting Nutch data

- All data can be exported to plain text formats
- bin/nutch read*
e ...db —read CrawlDB and dump some/all records
e ...1inkdb —read LinkDb and dump some/all records
 ...seg — read segments (shards) and dump some/all records 30
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Web data mining with Nutch
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w
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Nutch search

» Solr indexing and searching (preferred)
- Simple Lucene indexing / search available too

» Using Solr search:
- DisMax search over several fields (url, title, body, anchors)
- Faceted search

- Search results clustering
- SolrCloud:

« Automatic shard replication and load-balancing
- Hashing update handler to distribute docs to Solr shards

32



Nutch — Berlin Buzzwords '10

Search-based analytics

« Keyword search — crude topic mining
* Phrase search — crude collocation mining
* Anchor search — crude semantic enrichment

* Feedback loop from search results:
- Faceting and on-line clustering may discover latent topics
- Top-N results for reference queries may prioritize further crawling

« Example: question answering system
- Source documents from reference sites

- NLP document analysis: key-phrase detection, POS-tagging,
noun-verb / subject-predicate detection, enrichment from DBs
and semantic nets

- NLP query analysis: expected answer type (e.g. person, place,
date, activity, method, ...), key-phrases, synonyms

- Regular search
- Evaluation of raw results (further NLP analysis of each document) ..,
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Web as a corpus

* Examples:
- Source of raw text in a specific language

- Source of text on a given subject
« Selection by e.g. a presence of keywords, or full-blown NLP

- Add data from known reference sites (Wikipedia, Freebase) or
databases (Medline) or semantic nets (WordNet, OpenCyc)

- Source of documents in a specific format (e.g. PDF)
* Nutch setup:

- URLFilters define the crawling frontier and content types

- Parse plugins determine the content extraction / processing
 e.g. language detection

 Nutch shards:

- Extracted text, metadata, outlinks / anchors

34
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Web as a corpus (2)

» Concept mining
- Harvesting human-created concept descriptions and
associations
- “kind of”, “contains”, “includes”, “application of”
- Co-occurrence of concepts has some meaning too!

 Example: medical search engine
- Controlled vocabulary of diseases, symptoms, procedures

- |dentifiable metadata: author, journal, publication date, etc.

- Nutch crawl of reference sites and DBs

« Co-occurrence of controlled vocabulary
- BloomFilter-s for quick trimming of map-side data
- Or Mahout collocation mining for uncontrolled concepts
« Cube of co-occurring (related) concepts
« Several dimensions to traverse
- “authors who publish most often together on treatment of myocardial infarction”

« 10 nodes, 100k phrases in vocabulary, 20 min pages, ~300bln
phrases on map side — ~5GB data cube

35



Web as a directed graph

Nutch — Berlin Buzzwords '10

Nodes (vertices): URL-s as unique identifiers
Edges (links): hyperlinks like <a href="targetUrl"/>
Edge labels: <a href=
Often represented as adjacency (neighbor) lists
Inverted graph: LinkDB in Nutch

>anchor text</a>

Straight (outlink) graph:
1 — 2a, 3b, 4c, 5d, 6e

5 — 6f, 99

7 — 3h, 4i, 8j, 9k

Inverted (inlink) graph:
2 —1a

3« 1b, 7h

4 —1c, 7i

5« 1d

6 — 1e, 5f

8 «— 7]

O « 5g, 7k
36
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Link inversion

» Pages have outgoing links (outlinks)
... | know where I'm pointing to

* Question: who points to me?
... I don't know, there is no catalog of pages

... NOBODY knows for sure either!
* In-degree may indicate importance of the page
* Anchor text provides important semantic info

 Answer: invert the outlinks that | know about,
and group by target (Nutch 'invertlinks')

37
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Web as a recommender

* Links as recommendations:
- Link represents an association
- Anchor text represents a recommended topic
« ... with some surrounding text of a hyperlink?
* Not all pages are created equal
- Recommendations from good pages are useful
- Recommendations from bad pages may be useless
- Merit / guilt by association:
 Links from good pages should improve the target's reputation
 Links from bad pages may compromise good pages' reputation
* Not all recommendations are trustworthy
- What links to trust, and to what degree?

- Social aspects: popularity, fashion, mobbing, fallacy of
“common belief”

38
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Link analysis and scoring

* PageRank
- Query-independent page weight
- Based on the flow of weight along link paths

« Dampening factor a to stabilize the flow
« Weight from “dangling nodes” redistributed

* Other models
- Hyperlink-Induced Topic Search (HITS)

* Query-dependent, local iterations, hub/authority

- TrustRank

* Propagation of “trust” based on human expert
evaluation of seed sites

* Challenges

- Loops, link spam, cliques, loosely connected
subgraphs, mobbing, etc

1

!

1
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0.75

0.75
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el -t
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Nutch link analysis tools

* Tools for PageRank calculation with loop detection
- LinkDDb: source of anchor text (think “recommended topics”)
- Page in-degree = popularity / importance / quality
- Scoring API (and plugins) to control the flow of page importance
along link paths

* Nutch shards:
- Source of outlinks — expanding the crawling frontier
- Page linked-ness vs. its content: hub or authority
 Example: porn / junk detection
- Links to “porn” pages poisonous to importance / quality
- Links from “porn” pages decrease the confidence in quality of the
target page
 Example: vertical crawl
- Expanding to pages “on topic” == with sufficient in-link support
from known on topic pages

40
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Web of gossip and opinions

» General Web — not considering special-purpose
networks here...

* Example:
- Who / what is in the news?

- How often a name is mentioned?
« today Google yields 44,500 hits for ab@getopt.org ©

- What facts about me are publicly available”?
- What is the sentiment associated with a name (person,
organization, trademark)?

* Nutch setup:
- Seed from a few reference news sites, blogs, Twitter, etc
- Use Nutch plugin for RSS/Atom crawling
- NLP parsing plugins (NER, classification, sentiment analysis)

 Nutch shards:

- Capture temporal aspect
41
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Web as a source of ... anything

* The data is there, just lost among irrelevant stuff
- Difficult to find — good seed list + crawling frontier controls
- Mixed with junk & irrelevant data — URL & content filtering

* Be creative — combine multiple strategies:
- Crawl for raw data, stay on topic — filter out junk early
- Use plain indexing & search as a crude analytic tool
- Use creative post-processing to filter and enhance the data

- Export data from Nutch and pipe it to other tools (Pig,
HBase, Mahout, ...)

42
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Future of Nutch

* Nutch 2.0 re-design

Refactoring, cleanup, better scale-up / scale-down
Avoid code duplication
Expected release ~Q4 2010

» Share code with other crawler projects —

crawler-commons

* Indexing & Search — Solr, SolrCloud

Distributed and replicated search is difficult
Initial integration needs significant improvement
Shard management — SolrCloud / Zookeeper

* Web-graph & page repository — ORM layer

Combine CrawlDB, LinkDB and shard storage
Avoid tedious shard management

Gora ORM mapping: HBase, SQL, Cassandra? BerkeleyDB?
Benefit from native tools specific to storage — easier integration

43
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Future of Nutch (2)

 \What's left then?

- Crawling frontier management, discovery

- Re-crawl algorithms

- Spider trap handling

- Fetcher

- Ranking: enterprise-specific, user-feedback

- Duplicate detection, URL aliasing (mirror detection)

- Template detection and cleanup, pagelet-level crawling
- Spam & junk control

* Vision: a la carte toolkit, scalable from
1-1000s nodes

- Easier setup for small 1 node installs
- Focus on a reliable, easy to integrate framework

44
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Conclusions

(This overview is a tip of the iceberg)

Nutch

* Implements all core search engine components

» Extremely configurable and modular

» Scales well

A complete crawl & search platform — and a toolkit

» Easy to use as an input feed to data collecting and
data mining tools

45
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Q& A

* Further information:
- http://nutch.apache.org/
- user@nutch.apache.org

» Contact author:
- ab@sigram.com

46
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